MATH PROBLEMS OF 2002
|
January 2002 |
Question : Find the
minimum of |
|
Congratulations | |||
![]() |
Serhat Doğan | Özel Şehzade Mehmet Lisesi, Manisa | |||||
![]() |
Murat Ak | Bilkent Universitesi, Ankara | |||||
![]() |
Yankı Lekili | Bilkent Universitesi, Ankara | |||||
![]() |
Erkan Özkan | Özel Nilüfer Lisesi, Bursa |
|
April 2002 |
Question : Prove that the equation
has no solution in natural numbers.
|
|
Congratulations | |||
![]() |
Suat Gumussoy | The Ohio State University | |||||
![]() |
Murat Ak | Bilkent University, Ankara | |||||
![]() |
Baatar Tsolman | Middle East Technical University, Ankara | |||||
![]() |
Koksal Dinc | Hacettepe University | |||||
![]() |
Erkan Ozkan | Ozel Nilufer Lisesi, Bursa | |||||
![]() |
Oztekin Bakir | Bartin |
|
May 2002 |
Question :
There is a finite number of towns in a country. They are connected by one direction roads. It is known that for any two towns, one of them can be reached from the other one. Prove that there is a town such that all the remaining towns can be reached from it.
|
|
Congratulations |
|||
![]() |
Baatar Tsolman | Middle East Technical University, Ankara | |||||
|
June 2002 |
Question : Is there an integer n such that
|
|
Congratulations
|
|||
![]() |
Ali Yildiz | Bilkent University, Ankara | |||||
![]() |
Vivek Kumar Mehra | Mumbai, India | |||||
![]() |
Serhat Dogan | Ozel Sehzade Mehmet Lisesi, Manisa | |||||
![]() |
Ha Duy Hung | Hanoi University of Education, Vietnam | |||||
![]() |
Sener Ozturk | ||||||
![]() |
Oztekin Bakir | Bartin | |||||
![]() |
Hakan Ozaydin | Middle East Technical University, Ankara | |||||
![]() |
Aylin Tokuc | Bilkent University, Ankara | |||||
![]() |
Murat Ak | Bilkent University, Ankara |
|
July-August 2002 |
Question : Non-negative real numbers a, b, and c satisfy
|
|
Congratulations | |||
![]() |
Vejdi Hasanov | Sumen University, Bulgaria | |||||
![]() |
Ha Duy Hung | Hanoi University of Education, Vietnam | |||||
![]() |
Murat Ak | Bilkent University, Ankara | |||||
![]() |
Vivek Kumar Mehra | Mumbai, India | |||||
![]() |
Ali Yıldız | Bilkent University, Ankara | |||||
![]() |
Jacob Tsimerman | Toronto, Canada | |||||
![]() |
Şener Öztürk | İstanbul | |||||
![]() |
Beata Stehlikova | Comenius University, Bratislava, Slovakia |
|
September 2002 |
Question :
Let x1, x2, … , x2002 be
some points lying on a unit circle and dij be the distance
between xi and xj . Let
for i, j = 1, 2, … , 2002 and i < j . Find the maximum of S over all possible distributions of x1, x2, … , x2002
|
|
Congratulations | |||
|
Ha Duy Hung |
Hanoi University of Education, Vietnam |
|||||
![]() |
Murat Ak | Bilkent University, Ankara | |||||
![]() |
K. Zhereb |
Moscow Institute of Physics and Technology, Moscow |
|||||
![]() |
Mustafa Turgut | Isparta | |||||
|
October 2002 |
Question : Find all real solutions of the following equation : |
|
Congratulations | |||
![]() |
Hung Ha Duy |
Hanoi University of Education, Vietnam |
|||||
![]() |
Mustafa Turgut |
Isparta |
|||||
![]() |
Vejdi Hasanov |
Shumen University, Bulgaria |
|||||
![]() |
Beata Stehlikova | Comenius University, Bratislava, Slovakia | |||||
![]() |
Jacob Tsimerman | Toronto, Canada | |||||
![]() |
Murat Ak | Bilkent University, Ankara | |||||
![]() |
Stojan Trajanovski |
High School "RJ Korcagin" Skopje, R. Macedonia |
|||||
|
|||||||
![]() |
Eaturu Sribar |
Indian Institute of Technology, Mumbai, India |
|||||
![]() |
Ignas Buvitis |
Lithuania |
|||||
![]() |
Athanasios Papaioannou |
Thessaloniki, Greece |
|||||
![]() |
Şener Öztürk | İstanbul | |||||
![]() |
Birol Bakay |
Bilkent University, Ankara |
|
November 2002 |
Question : Let A be a number obtained by some rearrangement of the digits of 2n, where n is a natural number. Prove that A ≠ 2k for all k > n . |
|
Congratulations | |||
![]() |
Jacob Tsimerman | Toronto, Canada | |||||
![]() |
Beata Stehlikova | Comenius University, Bratislava, Slovakia | |||||
![]() |
Birol Bakay | Bilkent University, Ankara | |||||
![]() |
Mustafa Öztekin | Boğaziçi University, Istanbul | |||||
![]() |
Umut Işık | Bilkent University, Ankara | |||||
![]() |
Vivek Kumar Mehra | Mumbai, India | |||||
![]() |
Ali Yıldız | Bilkent University, Ankara | |||||
![]() |
Yiğit Subaşı | Bilkent University, Ankara | |||||
![]() |
Erdem Özcan | Bilkent University, Ankara |
|
December 2002 |
Question : For each natural number n = p1.p2. … pr , where pi is prime for each i = 1, 2, … , r , define f (n) = 1 + p1 + p2 + … + pr .
Prove that for any natural number k, the sequence a1 = k, am = f(am-1) , m = 2, 3, … is periodic.
|
|
Congratulations | |||
![]() |
Vivek Kumar Mehra | Mumbai, India | |||||
![]() |
Stojan Trajanovski |
High School "RJ Korcagin" Skopje, R. Macedonia |
|||||
![]() |
Athanasios Papaioannou |
Thessaloniki, Greece |
|||||
![]() |
Julien Santini | Universite de Provence, France | |||||
![]() |
Emre Çakır | Bilkent University, Ankara | |||||
![]() |
Erdem Özcan | Bilkent University, Ankara | |||||
![]() |
Umut Işık | Bilkent University, Ankara | |||||
![]() |
David Anderson | Middle East Technical University, Ankara | |||||
![]() |
Mustafa Öztekin | Boğaziçi University, Istanbul | |||||
![]() |
Jacob Tsimerman | Toronto, Canada | |||||
![]() |
Beata Stehlikova | Comenius University, Bratislava, Slovakia |