

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

July-August 2025

Problem:

Let a, b, c be pairwise relatively prime positive integers satisfying a > bc. For any two positive integers m < n we say that m is a successor of n, if for every pile of stones with weights a, b, c and total weight n, it is possible to remove some stones and obtain a new pile with total weight m. Find the greatest positive integer that does not have any successor.

Solution: Answer: abc.

We first show that abc has no successor. Suppose that it has a successor m. Consider a pile consisting of bc stones each having weight a. Thus, m has to be a multiple of a. Similarly, m is divisible by b and c as well. As those three numbers are relatively prime, m must be a multiple of abc which contradicts with m < abc.

We next show that every n > abc has a successor. Let n = aq + r with $0 \le r < a$. By the Chinese Remainder theorem the system

$$m \equiv r \pmod{a}$$

 $m \equiv 0 \pmod{b}$

$$m \equiv 0 \pmod{c}$$

has a solution $m \in \{1, 2, ..., abc\}$. Let m = ak + r = bcl. Consider a pile consisting of x stones of weight a, y stones of weight b and c stones of weight c such that c

Case 1: $s \le k$. Then we have x + s = q and $s \le k \le bc \le q = x + s$. Removing x - k + s stones of weight a gives a pile with total weight m.

Case 2:
$$s > k$$
. Let $y = cy_1 + y_2$, $0 \le y_2 < c$ and $c = bz_1 + z_2$, $0 \le z_2 < b$. Then, as

$$by + cz = bc(y_1 + z_1) + by_2 + cz_2 < bc(y_1 + z_1 + 2)$$

and

$$bc(l+1) = bcl + bc < ak + r + a \le as + r = by + cz,$$

we obtain $l+1 < y_1 + z_1 + 2$. Thus, $l \le y_1 + z_1$. Therefore, leaving a pile consisting of cy_1 stones of weight b and $b(l-y_1)$ stones of weight c gives a pile with total weight m, so we are done.