

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

November 2024

Problem:

At the beginning the board contains 77 vectors

 $(1, 0, 0, \ldots, 0), (0, 1, 0, \ldots, 0), \ldots, (0, 0, 0, \ldots, 1)$

each having 77 components. At each step we choose two vectors $(a_1, a_2, \ldots, a_{77})$ and $(b_1, b_2, \ldots, b_{77})$ written on the board and write their sum $(a_1 + b_1, a_2 + b_2, \ldots, a_{77} + b_{77})$ to the board. Find the minimal number of steps which should be made to get all the vectors

 $(0, 1, 1, \dots, 1), (1, 0, 1, \dots, 1), \dots, (1, 1, 1, \dots, 0).$

on the board.

Solution: Answer: $3 \cdot 77 - 6 = 225$.

Let us consider more general case when 31 is replaced by $n \ge 3$: At the beginning the board contains n vectors

 $(1, 0, 0, \ldots, 0), (0, 1, 0, \ldots, 0), \ldots, (0, 0, 0, \ldots, 1)$

each having n components and we are going get all the n component vectors

 $(0, 1, 1, \dots, 1), (1, 0, 1, \dots, 1), \dots, (1, 1, 1, \dots, 0).$

We will show that the minimal number of steps is 3n - 6.

Let us show that 3n - 6 steps are sufficient. Let v_i^n be a vector whose i-th coordinate is 1 and all remaining n - 1 coordinates are 0 and let u_i^n be a vector whose ith coordinate is 0 and all remaining n - 1 coordinates are 1.

We use Induction over n. If n = 3 then by applying $v_1^3 + v_2^3$, $v_1^3 + v_3^3$ and $v_2^3 + v_3^3$ we get the u_1^3, u_2^3 and u_3^3 in 3 steps. Assume that for n = k the required vectors can be obtained in

3k-6 steps and let n = k+1. At the first step by adding v_k^{k+1} and v_{k+1}^{k+1} we get the vector $v_k^{k+1} + v_{k+1}^{k+1} \equiv w_{k,k+1}^{k+1}$. By inductive hypothesis, starting with vectors $v_1^k, v_2^k, \ldots, v_{k-1}^k$ and v_k^k after 3k-6 steps we can get the vectors $u_1^k, u_2^k, \ldots, u_{k-1}^k$ and u_k^k . If we replace v_1^k by v_1^{k+1}, v_2^k by $v_2^{k+1}, \ldots, v_{k-1}^k$ by v_{k-1}^{k+1} and v_k^k by $w_{k,k+1}^{k+1}$ and apply the same 3k-6 steps then we will get the vectors $u_1^{k+1}, u_2^{k+1}, \ldots, u_{k-1}^{k+1}$ and the vector $\bar{w}_{k,k+1}^{k+1}$ whose last two coordinates are 0 and the remaining coordinates are 1. Finally by applying $v_k^{k+1} + \bar{w}_{k,k+1}^{k+1}$ and $v_{k+1}^{k+1} + \bar{w}_{k,k+1}^{k+1}$ we get the vectors $u_1^{k+1}, u_2^{k+1}, \ldots, u_k^{k+1}$. Thus, after 1 + (3k-6) + 2 = 3(k+1) - 6 steps we get required vectors $u_1^{k+1}, u_2^{k+1}, \ldots, u_k^{k+1}$ and u_{k+1}^{k+1} .

Now we show that at least 3n - 6 steps are necessary. For $n \ge 3$, let f(n) be the minimal possible number of steps. By induction we will show that $f(n) \ge 3n - 6$.

If n = 3 then it can be readily shown that $f(3) \ge 3$.

Suppose that for n = k we have $f(k) \ge 3k - 6$. Let us go over steps made for n = k + 1. Let A be the step when the vector v_{k+1}^{k+1} was used for the first time. In this step the vector v_{k+1}^{k+1} was added to a vector r(m) such that for some $1 \le m \le k$ mth coordinate of r(m) is non-zero. In order to get the vector u_m^{k+1} whose only 0 coordinate is mth coordinate, the vector v_{k+1}^{k+1} will be used at least once more. Let B be one of these steps. Let C be step when the vector u_m^{k+1} whose only 0 coordinate is k + 1st coordinate is obtained. In the sequence of steps made for n = k + 1 by removing steps A, B, C and erasing k + 1st coordinates of all vectors we can get all required vectors for n = k. Therefore, $f(k+1) - 3 \ge f(k) \ge 3k - 6$ and hence $f(k+1) \ge 3(k+1) - 6$. We are done.