

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

May 2017

Problem:

Find all triples (m, n, p) satisfying

$$(m^3 + n)(n^3 + m) = p^3$$

where m, n are positive integers and p is a prime number.

Solution: Answer: (m, n, p) = (2, 1, 3), (1, 2, 3).

If m = n then $n^2(n^2 + 1) = p^3$. Since $gcd(n^2, n^2 + 1) = 1$ and p is prime we get n = 1, no solution.

Let $m > n \ge 1$. Since $n^3 + m \ge 2$ we get $m^3 + n = p^2(\dagger)$, $n^3 + m = p(\ddagger)$.

If n = 1 then $p^2 = (m^3 + 1) = (m + 1)(m^2 - m + 1)$ and m + 1 = p. Therefore, $m^2 - m + 1 = p = m + 1$, m = 2. Thus, we have a solution m = 2, n = 1, p = 3.

If n > 1 then $p = n^3 + m > m + n$ and therefore $p \not| m + n$ and $p \not| m - n$. Adding and subtracting of (†) and (‡) we get

$$(m+n)(m^2-mn+n^2+1) = p(p+1)$$
 $(m-n)(m^2+mn+n^2-1) = p(p-1).$

Since $p \not| m + n$ and $p \not| m - n$ we get $p \mid m^2 - mn + n^2 + 1$ and $p \mid m^2 + mn + n^2 - 1$. Therefore $p \mid (m^2 + mn + n^2 - 1) - (m^2 - mn + n^2 + 1) = 2(mn - 1)$. If p = 2 then m = n = 1, no solution. Therefore, $p \mid mn - 1$ and $p \leq mn - 1$. Now since $n^3 + n < n^3 + m = p \leq mn - 1 < mn$ we get $n^3 + n < mn$ and $n^2 + 1 < m$. Thus, $n^2 < m$. Since $p \leq mn - 1$ we get $p^2 \leq m^2n^2 - 2mn + 1$. Therefore, $m^3 + n = p^2 \leq m^2n^2 - 2mn + 1$. Since $n^2 < m$ we get $m^2n^2 - 2mn + 1 < m^3 - 2mn + 1$. Then $m^3 + n < m^3 - 2mn + 1$ and consequently 2mn + n < 1, a contradiction.

The case $n > m \ge 1$ similarly yields the solution n = 2, m = 1, p = 3.