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Problem:

Find the maximal possible value of the real number A such that for all positive real
numbers x, y, z satisfying xyz = 1 we have
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Solution:

Let us prove that the maximal possible value of A is %. Since at x = y = z = 1 the left

hand side is % we have to show that A = % satisfies the inequality. Put a = yz,b = xz

and ¢ = xy. Then abc = 1 and the inequality becomes
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Indeed, straightforward calculations show that the last inequality is equivalent to ab® +
ba® + 1 > a?b? + 2ab or ab(a — b)* + (1 — ab)? > 0. The inequality T for a = c and b = 1
yields
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The sum of T and tf
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The proof is completed.



