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Problem:

Find the maximal possible real number A such that
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> A
x2+1+y2—|—1+22+1_

for all real numbers z,y and z satisfying x +y + 2z = 1.

Solution:

The answer is —.
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The inequality is equivalent to
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Thus, we have to prove that
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Case 1: z,y,z € [0,4/3]. Define f(t) = PERR Since f"(t) = Q(igiz)i) <0forallte

[0,4/3], f(-) is concave on [0,+/3] interval and f(z) + f(y) + f(z) < 3f(1/3) = 9/10

and (x) follows.



W.lo.g. suppose that x > y > 2. Then z < 0.
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f(+) decreases on (—oo, —1), increases on (—1, 1) and again decreases on (1,00) (%)

Since f'(t) =

Case 2: y < 1/2. Then by (xx)
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Case 3: y > 1/2.
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If-3<z< —%, then since f(—3) > f(—1/2) by (xx%)
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If z < —3, then = > 2 and by (%)
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The equality in (%) holdsif x =y =2 == [



