

## Bilkent University Department of Mathematics

## PROBLEM OF THE MONTH

June 2010

## Problem:

Let  $a_1, a_2, \ldots$  be a non-decreasing sequence of natural numbers satisfying  $a_{a_k} = 3k$  for any k. Determine the set of all possible values of  $a_{2010}$ .

## **Solution:**

Suppose that  $a_n = a_m$ . Then  $a_{a_n} = a_{a_m}$  and 3n = 3m. Therefore, the sequence is strictly increasing.

Suppose that  $a_n \leq n$  for some n. Then  $3n = a_{a_n} \leq a_n \leq n$ , a contradiction. Thus,  $a_n > n$ . Note that  $a_{3n} = a_{a_{a_n}} = 3a_n$ .

Suppose that  $a_n \ge 3n$  for some n. Then  $3n = a_{a_n} \ge a_{3n} = 3a_n$  or  $a_n \le n$ , a contradiction. Therefore,  $n < a_n < 3n$ . Thus,  $a_1 = 2$ ,  $a_2 = a_{a_1} = 3$  and  $a_{3^n} = 2 \cdot 3^n$ . Now  $a_{2 \cdot 3^n} = a_{a_{3^n}} = 3^{n+1}$ .

If  $3^n < l < 2 \cdot 3^n$ , then  $a_{3^n} < a_l < a_{2 \cdot 3^n}$ . Thus,  $2 \cdot 3^n < a_l < 3^{n+1}$ . Since the sequence is strictly increasing and  $2 \cdot 3^n - 3^n = 3^{n+1} - 2 \cdot 3^n$ , we get  $a_{3^n+t} = 2 \cdot 3^n + t$ .

If  $2 \cdot 3^n < l < 3^{n+1}$ , then  $a_{2 \cdot 3^n} < a_l < a_{3^{n+1}}$ . Thus,  $3^{n+1} < a_l < 2 \cdot 3^{n+1}$ . Let  $l = 2 \cdot 3^n + t$ . Then  $a_{2 \cdot 3^n + t} = 3^{n+1} + s$ . Let us determine s. We have  $a_{a_{2 \cdot 3^n + t}} = a_{3^{n+1} + s}$ . Therefore,  $3 \cdot (2 \cdot 3^n + t) = 2 \cdot 3^{n+1} + s$ . Thus, s = 3t and  $a_{2 \cdot 3^n + t} = 3^{n+1} + 3t$ .

All terms of the sequence are uniquely determined. Now  $a_{2010} = 3 \cdot a_{670}$  and  $a_{670} = a_{2:3^5+184} = 3^6 + 3 \cdot 184$ . Finally,  $a_{2010} = 3843$ .