

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

January 2009

Problem:

Let $f: \mathbb{Z}^+ \times \mathbb{Z} \to \mathbb{Z}$ be a function satisfying the following conditions:

1.
$$f(0,k) = 1$$
 if $k = 0, 1$.

2.
$$f(0,k) = 0$$
 if $k \neq 0$ and $k \neq 1$.

3.
$$f(n,k) = f(n-1,k) + f(n-1,k-2n)$$
 for all $n \ge 1$ and k .

Determine $\sum_{k=0}^{\binom{2009}{2}} f(2008, k)$.

Solution:

A. Let us show that for all $n \ge 0$, f(n,k) = 0 if k < 0 or $k > n^2 + n + 1$. Proof by induction:

1.
$$n = 0$$
: $f(0, k) = 0$ if $k < 0$ or $k > 0^2 + 0 + 1 = 1$.

2. Suppose
$$f(n-1,k)=0$$
 if $k<0$ or $k>(n-1)^2+n-1+1=n^2-n+1$. Consider $f(n,k)$. If $k<0$, then $f(n,k)=f(n-1,k)+f(n-1,k-2n)=0+0=0$. If $k>n^2+n+1$, then $k-2n>n^2-n+1$ and again $f(n,k)=f(n-1,k)+f(n-1,k-2n)=0+0=0$.

B. Let us show that $f(n,k) = f(n,n^2 + n + 1 - k)$ for all $n \ge 0$ and k. Proof by induction:

- 1. n = 0: f(0, k) = f(0, 1 k).
- 2. Suppose $f(n-1,k)=f(n-1,n^2-n+1-k)$. Then $f(n,k)=f(n-1,k)+f(n-1,k-2n)=f(n-1,n^2-n+1-k)+f(n-1,n^2+n+1-k)=f(n-1,n^2+n+1-k-2n)+f(n-1,n^2+n+1-k)=f(n,n^2+n+1-k)$.
- C. Let us show that $\sum_{k=0}^{n^2+n+1} f(n,k) = 2^{n+1}$. Proof by induction:
- 1. n = 0: $f(0,0) + f(0,1) = 2^{0+1}$.
- 2. Suppose $\sum_{k=0}^{n^2-n+1} f(n-1,k) = 2^n$. Then $\sum_{k=0}^{n^2+n+1} f(n,k) = \sum_{k=0}^{n^2+n+1} f(n-1,k) + \sum_{k=0}^{n^2+n+1} f(n-1,k-2n) = (byA,B) \sum_{k=0}^{n^2-n+1} f(n-1,k) + \sum_{m=0}^{n^2-n+1} f(n-1,m) = 2^n + 2^n = 2^{n+1}$.

Finally, by B and C, $\sum_{k=0}^{\frac{n^2+n}{2}} f(2008, k) = 2^{n+1}/2 = 2^n$.

Therefore, $\sum_{k=0}^{\binom{n}{2}} f(2008, k) = 2^{n-1}$. The answer is 2^{2008} .