

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

February 2007

Problem: Let P be the product of the positive real numbers $a_1, a_2, \ldots, a_{1024}$. Prove that

$$\prod_{i=1}^{1024} \left(1 + \frac{1}{a_i^{1024} + a_i^{2048}} \right) \ge \left(1 + \frac{1}{P + P^2} \right)^{1024}$$

Solution:

Let us prove that for arbitrary positive real numbers a,b the following inequality holds:

$$\left(1 + \frac{1}{a^2 + a^4}\right) \left(1 + \frac{1}{b^2 + b^4}\right) \ge \left(1 + \frac{1}{ab + a^2b^2}\right)^2 \tag{*}$$

Let us multiply both sides of (*) by $a^2b^2(1+a^2)(1+b^2)(1+ab)^2$:

$$(1+a^2+a^4)(1+b^2+b^4)(1+ab)^2 \ge (1+a^2)(1+b^2)(1+ab+a^2b^2)^2.$$

After expansion of the brackets (27+24 terms!) and simplifying the inequality (*) has the following form:

$$a^4 + b^4 - 2a^2b^2 + 2ab^5 + 2a^5b - a^2b^4 - a^4b^2 - 2a^3b^3 + a^2b^6 + a^6b^2 - 2a^4b^4 \ge 0$$
 which is equivalent to

$$(a^2 - b^2)^2 + ab(2b^4 + 2a^4 - ab^3 - a^3b - 2a^2b^2) + a^2b^2(a^2 - b^2)^2$$

$$= (a^{2} - b^{2})^{2} + ab((a^{2} - b^{2})^{2} + (a - b)^{2}(a^{2} + ab + b^{2})) + a^{2}b^{2}(a^{2} - b^{2})^{2} > 0$$

Since all terms of the last inequality are nonnegative, the inequality (*) is proved.

Now, we prove by induction that for all $n \geq 1$ and any positive real numbers $a_1, a_2, \ldots, a_{2^n}$ with product P_n

$$\prod_{i=1}^{2^n} \left(1 + \frac{1}{a_i^{2^n} + a_i^{2^{n+1}}} \right) \ge \left(1 + \frac{1}{P_n + P_n^2} \right)^{2^n} \tag{I_n}$$

In particular, this will give the required inequality when n = 10. Inequality (I_1) directly follows from (*). Assume that (I_n) holds. Then

$$\prod_{i=1}^{2\times 2^n} \left(1 + \frac{1}{a_i^{2\times 2^n} + a_i^{4\times 2^n}}\right) = \prod_{i=1}^{2^n} \left(1 + \frac{1}{a_{2i-1}^{2\times 2^n} + a_{2i-1}^{4\times 2^n}}\right) \left(1 + \frac{1}{a_{2i}^{2\times 2^n} + a_{2i}^{4\times 2^n}}\right)$$

$$\geq \prod_{i=1}^{2^n} \left(1 + \frac{1}{a_{2i-1}^{2^n} a_{2i}^{2^n} + a_{2i-1}^{2 \times 2^n} a_{2i}^{2 \times 2^n}} \right)^2 (by(*)) \geq \left[\left(1 + \frac{1}{\prod_{i=1}^{2^n} a_{2i-1} a_{2i} + (\prod_{i=1}^{2^n} a_{2i-1} a_{2i})^2} \right)^{2^n} \right]^2$$

(the latter from (I_n) applied to the numbers $a_{2i-1}a_{2i}$ $(i=1,2,\ldots,2^n)$). Thus,

$$\prod_{i=1}^{2\times 2^n} \left(1 + \frac{1}{a_i^{2\times 2^n} + a_i^{4\times 2^n}} \right) \ge \left(1 + \frac{1}{\prod_{i=1}^{2\times 2^n} a_i + (\prod_{i=1}^{2\times 2^n} a_i)^2} \right)^{2\times 2^n}$$

The last inequality is (I_{n+1}) . The proof is completed.

The problem has an alternative solution based on the convexity of the function $\ln(1 + \frac{1}{\exp x + \exp 2x})$.